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Abstract

There exist many works on full Kostant–Toda flows whose initial points belong to a grand cell of the flag variety. In this paper
we study the full Kostant–Toda flows whose initial points belong to small cells other than the grand cell and preserving small cells.
To obtain such flows, we consider the cell decomposition of the grand cell induced by Bruhat decomposition of the flag variety. We
show that such full Kostant–Toda flow can be reduced to the ordinary tridiagonal Toda flow by using sheaf theoretical methods.
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1. Introduction

The Lax operator of the full Kostant–Toda lattice is the Hessenberg matrix of the form

L(t) = Λ +

∑
1≤ j≤i≤n

L i, j (t)Ei, j , (1.1)

where Ei, j is the i, j matrix unit and Λ =
∑n−1

j=1 E j, j+1, which satisfies the equation

L̇(t) = [L(t)+, L(t)]. (1.2)

We consider the reduction of the full Kostant–Toda lattice to the ordinary Toda lattice. We know that the full
Kostant–Toda lattice is itself integrable by virtue of many works: [3,5,8,11] etc. Let G be GL(n,C). Let B ⊂ G
be the Borel subgroup of upper triangular matrices and N ⊂ B be the subgroup whose diagonal components are all
1. Moreover B̄ and N̄ are opposites of B and N respectively. Let b, n, b̄ and n̄ be Lie algebras of B, N , B̄ and N̄
respectively. To obtain the solution of the Lax equation, we consider the Gauss decomposition

W∞(t)
−1W0(t) = et L , (1.3)
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where W∞(t) ∈ N̄ , W0(t) ∈ B and L is the constant matrix of the form Λ + b̄. Put L(t) = W∞(t)LW∞(t)−1. Then
L(t) satisfies (1.2) and has the form Λ + b̄. It is natural to regard et L of (1.3) as a point of the flag variety of G/B
rather than an element of G. As we know, the flag variety G/B has the Bruhat decomposition [1]

G/B = tσ∈Sn N̄σ B/B, (1.4)

where Sn is the n-th symmetric group. We see that et L belongs to the φ-cell N̄ B/B from the Gauss decomposition
(1.3). Then it is natural to consider what equation would be induced if et L belonged to the σ -cell N̄σ B/B. In other
words, we want to know the equation which L(t) = W∞(t)LW∞(t)−1 satisfies, where W∞(t) ∈ N̄ satisfies the
Bruhat decomposition

W∞(t)
−1σW0(t) = et L . (1.5)

In [7], the authors efficiently explain the Painlevé analysis (or blow-ups of solutions) of the Toda lattice (cf. [4,6]) via
the topology of the iso-level set of the Toda lattice (flag variety; cf. [2,15,17]). If et L leaves the φ-cell for another cell
at t = t0, L(t) = W∞(t)LW∞(t)−1 has a pole at t = t0, where W∞(t) satisfies the Gauss decomposition

W∞(t)
−1W0(t) = et L , (t ∈ (t0 − ε, t0 + ε)− {t0} for 0 < ε << 1).

They determine the cells from which et L leaves for the singularity of the Toda lattice at t = t0. In this paper we focus
on the Toda flows whose initial points belong to the σ (6=φ) cell of the flag variety and preserving the σ -cell. We
realize such flows by using Gauss decompositions equivalent to (1.5). Furthermore we exhibit a simple example in the
Appendix which explains that the flows start with the initial point of a small cell and the reason why the flows with
the initial point of the φ-cell leave for the other cell in finite time [7]. To obtain the dynamical system, we have the
following Gauss decompositions of two types equivalent to (1.5):

W̃∞(t)
−1W̃0(t) = σ−1et L , (1.6)

where W̃∞(t) ∈ N̄ ∩ σ−1 N̄σ and W̃0(t) ∈ B and

W̃∞(t)
−1W̃0(t) = et Lσ−1, (1.7)

where W̃∞(t) ∈ N̄ and W̃0(t) ∈ B ∩ σ Bσ−1. From the topological point of view, the decomposition of (1.6) relates
to a cell decomposition of the φ-cell of the flag variety such as

N̄ B/B = tσ∈Sn Yσ , (1.8)

where Yσ is an open dense set of (N̄ ∩ σ−1 N̄σ)B/B. On the other hand the decomposition of (1.7) relates to the
decomposition

N̄ B = tσ∈Sn Y ′
σ , (1.9)

where Y ′
σ is an open dense set of N̄ (B ∩ σ Bσ−1). We give precise definitions of Yσ and Y ′

σ in Sections 2 and 4.

In Sections 3 and 4, we consider L̃(t) = W̃∞(t)LW̃∞(t)−1, where W̃∞(t) satisfies (1.7). We see that L̃(t) satisfies

the ordinary Lax equation ˙̃L(t) = [L̃(t)+, L̃(t)] and L̃(t) has the form Λ + b̄. If L̃(t) is a Jacobi element we call L̃(t)
a Lax operator of the Toda lattice. We grasp that the full Kostant–Toda lattice is the Hamiltonian system on the affine
coordinate ring of Hessenberg matrices. We describe the full Kostant–Toda lattice in sheaf theoretical language from
the point of view of the Hamiltonian formalism. We apply our formulation to solve the following problem.

Problem. “Characterize the constant L of the form Λ+ b̄ for which L̃(t) = W̃∞(t)LW̃∞(t)−1, where W̃∞(t) satisfies
the decomposition (1.7), becomes the Lax operator of the Toda lattice.”

It is clear that L̃(t) is the Lax operator of the full Kostant–Toda lattice for any L of the form Λ + b̄. The problem
is finding the conditions for L so that L̃(t) is a Jacobi element. In the case of σ = id , it is enough for L to be a Jacobi
element, from the following proposition.
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Proposition 1.1. Let L ∈ Λ + b̄ be a Jacobi element. Then L(t) = W∞(t)LW∞(t)−1 satisfies the Lax equation
(1.2), L(t) is a Jacobi element and L(0) = L, where W∞(t) ∈ N̄ and W0(t) ∈ B satisfies the Gauss decomposition
W∞(t)−1W0(t) = et L .

This is straightforward from Th.2.4 of [13]. However in the case of σ 6= id, we cannot apply the method of
Kostant. The set of n × n complex Hessenberg matrices has foliation where each leaf, Sm , is the iso-level set of
the full Kostant–Toda lattice which is defined in Section 4 precisely. Then the sheaf theoretical language is useful
for restricting the results of the above problem to each of them. In the argument of Section 4, we see that the wave
operator of the full Kostant–Toda flow which starts from a point of the small cell of the flag variety has a pole at
t = t0. Since the flow on the small cell meets the grand cell at t = t0, this singularity occurs. Note that the singularity
of the Toda flows which start from points of the φ-cell have singularities when they meet small cells [7]. In [9], we
consider the cell preserving flows which do not meet other cells. In [16], the singularities of the full Kostant–Toda
flow with respect to k-chop integrals are considered. The singularities are classified as type I and type II. As regards
to our work, the singularities in this paper would relate to singularities of 0-chop flow of type II. However we do not
assume the coincidence of eigenvalues of the initial point. Thus the relation between our singularities and those of
type II is unclear.

2. The Gauss decomposition corresponding to the Bruhat decomposition of G/B and the associated full
Kostant–Toda lattice

Put Xσ = N̄σ B/B and Xφ = N̄ B/B in (1.4), where we identify σ with
∑n

i=1 Eσ(i),i . The ordinary
Gauss decomposition of the full Kostant–Toda lattice means that et X belongs to the φ-cell. However the Bruhat
decompositions for other cells differ from the Gauss decomposition. In this section we use the isomorphism of varieties
of cells of the Bruhat decomposition ([1], p. 193, Th.(a)) for the decomposition of Xφ . This decomposition gives the
Lax type equations (which differ from the ordinary Lax equation subtly) and parameterization by Sn . For σ ∈ Sn , we
define the homeomorphism mσ : G → G by mσ (g) = σ−1g. Then we see that

N̄σ B ∼= mσ (N̄σ B) = σ−1(N̄σ B) = (σ−1 N̄σ)B.

We move the cell N̄σ B by mσ and consider a subset of N̄ B/B such as (N̄ B ∩ σ−1 N̄σ B)/B. We will show that Xφ
is decomposed into cells associated with (N̄ B ∩ σ−1 N̄σ B)/B.

Proposition 2.1. It holds that

N̄ B ∩ σ−1 N̄σ B = (N̄ ∩ σ−1 N̄σ)B.

Proof. The inclusion (N̄∩σ−1 N̄σ)B ⊂ N̄ B∩σ−1 N̄σ B is clear. We show the converse. Suppose x ∈ N̄ B∩σ−1 N̄σ B.
Put x = σ−1nσb = n′b′, where n, n′

∈ N̄ and b, b′
∈ B.

Lemma 2.2. It holds that

σ−1 N̄σ ⊂ (N̄ ∩ σ−1 N̄σ)B,

for any σ ∈ Sn .

Proof. Suppose a =
∑n

i, j=1 ai, j Ei, j ∈ N̄ ; of course ai,i = 1 and ai, j = 0 for i < j . We see that

σ−1aσ =

n∑
i, j=1

ai, j Eσ−1(i),σ−1( j).

Suppose k > ` and σ−1(k) < σ−1(`). Put b = 1−ak,`Ek,`. Then we see that b ∈ N̄ and σ−1bσ ∈ N ⊂ B. Moreover
the k, ` component of ab is 0. More generally we have the following lemma.

Lemma 2.3. For a ∈ N̄ , there exist b1, . . . , br ∈ N̄ , such that the i, j components of ab1 · · · br where i > j and
σ−1(i) < σ−1( j) are 0 and σ−1biσ ∈ N ⊂ B, i = 1, . . . , r .
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Proof. Let `0 be the minimal number in {1, . . . , n} where there exists k ∈ {1, . . . , n} such that k > ` and
σ−1(k) < σ−1(`). Let k0 be the minimal number in {1, . . . , n} satisfying k > `0 and σ−1(k) < σ−1(`0). Put
b(k0, `0) = 1 − ak0,`0 Ek0,`0 ∈ N̄ . As we saw above, we see that the k0, `0 component of ab(k0, `0) is 0 and
σ−1b(k0, `0)σ ∈ N ⊂ B. Put a(1) = ab(k0, `0). Let k1 be the minimal number next to k0 satisfying k > `0 and
σ−1(k) < σ−1(`0). Put b(k1, `0) = 1 − a(1)k1,`0

Ek1,`0 ∈ N̄ . Then we see that the k1, `0 component of a(1)b(k1, `0) is

0 and σ−1b(k1, `0)σ ∈ N ⊂ B. Moreover we see that the right multiplication of b(k1, `0) is the addition of the k1-th
column of a(1) multiplied by −a(1)k1,`0

to the `0-th column of a(1). Since k1 > k0, the k0-th component of the k1-th

column of a(1) is 0. Then we see that the k0, `0 component of a(1)b(k1, `0) is still 0. We repeat these manipulations
until the numbers such as k > `0 and σ−1(k) < σ−1(`0) are exhausted. Let a(r1) be the resulting matrix of these
manipulations. Let `1 be the minimal number next to `0 such that there exist k ∈ {1, . . . , n} such that k > ` and
σ−1(k) < σ−1(`). We also proceed with the same manipulation as before to the `1-th column of a(r1). Since `1 > `0,
the manipulation for the `1-th column has no influence on the `0-th column. Then we obtain b1, . . . , br ∈ N̄ of this
lemma. �

For a ∈ N̄ , there exist b1, . . . , br ∈ N̄ of Lemma 2.3. Then we see that σ−1ab1 · · · brσ ∈ N̄ . Indeed put
ã = ab1 · · · br . Then we see that ã ∈ N̄ and σ−1ãσ =

∑
k,` ãk,`Eσ−1(k),σ−1(`). We have ãk,` = 0 ⇔ k > `

and σ−1(k) < σ−1(`) from Lemma 2.3. Then we have σ−1ãσ ∈ N̄ . Then we see that σ−1ãσ ∈ N̄ ∩ σ−1 N̄σ . Since
a = ãb−1

1 · · · b−1
r , we have

σ−1aσ = σ−1ãσ(σ−1b−1
1 σ) · · · (σ−1b−1

r σ) ∈ (N̄ ∩ σ−1 N̄σ)B.

Since x = σ−1nσb = n′b′ and σ−1nσ = ñb̃, where ñ ∈ N̄ ∩ σ−1 N̄σ and b̃ ∈ B, by the uniqueness of the Gauss
decomposition, we have n′

= ñ and b′
= b̃b. Then we have x ∈ (N̄ ∩ σ−1 N̄σ)B. This completes the proof of

Lemma 2.2 and we have N̄ B ∩ σ−1 N̄σ B ⊂ (N̄ ∩ σ−1 N̄σ)B. This completes the proof of Proposition 2.1. �

Put πσ = {[nb] ∈ N̄ B/B|ni, j = 0, i > j, σ−1(i) < σ−1( j)}. Then we see that Xφ is homeomorphic to Cn(n−1)/2.
We define the subsets of the φ-cell N̄ B/B associated with σ ∈ Sn by Yσ = πσ−∪τ>σ πτ . Then we see that Yσ0 = {0},
where σ0 is the longest element in Sn with respect to Bruhat order.

Proposition 2.4. There exists a cell decomposition of N̄ B/B such as

N̄ B/B = tσ∈Sn Yσ . (2.1)

Then each cell satisfies

Ȳσ = tτ≥σ Yτ ,

where Ȳσ is the closure in πσ with respect to the relative topology of πσ induced from N̄ B/B and ≥ means the Bruhat
order.

Proof. First, we show that the union of (2.1) is indeed disjoint. Assume that we have neither σ ≤ τ nor σ ≥ τ . We
see that πσ ∩πτ ⊂ (∪ι>σ πι)∩ (∪ι>τ πι). Since Yσ = πσ −∪ι>σ πι and Yτ = πτ −∪ι>τ πι, we have Yσ ∩ Yτ = φ. If
σ > τ , we can show Yσ ∩ Yτ = φ similarly. We see that Ȳσ0 = Yσ0 . We assume that the statement of the proposition
is true for τ > σ . Then we have

Ȳσ = πσ = Yσ t (πσ − Yσ ) = Yσ t ∪τ>σ πτ = Yσ t ∪τ>σ Ȳτ = Yσ t ∪τ>σ tι≥τ Yι = tτ≥σ Yτ . �

Yσ is an open dense subset of (N̄ ∩ σ−1 N̄σ)B/B with respect to the relative topology. Suppose et L
∈ N̄σ B/B.

Then we have the Bruhat decomposition

W∞(t)
−1σW0(t) = et L , (2.2)

where W∞(t) ∈ N̄ and W0(t) ∈ B and L ∈ Λ + b̄ is the constant matrix. We can imply the Gauss decomposition of
(2.1) as follows. From the proof of Lemma 2.3, we see that there exists n(t) ∈ N̄ such that

σ−1W∞(t)
−1n(t)σ ∈ N̄ and σ−1n(t)σ ∈ N ⊂ B.
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Put W̃∞(t) = n(t)−1W∞(t). Then we have W̃∞(t) ∈ N̄ ∩ σ N̄σ−1. We have

(σ−1W̃∞(t)σ )
−1

{(σ−1n(t)−1σ)W0(t)} = σ−1et L (2.3)

from (2.2). Note that σ−1W̃∞(t)σ ∈ N̄ ∩ σ−1 N̄σ and σ−1n(t)σW0(t) ∈ B. We rewrite the decomposition (2.3) as

W∞(t)
−1W0(t) = σ−1et L , (2.4)

where W∞(t) ∈ σ−1 N̄σ ∩ N̄ and W0(t) ∈ B. Put L(t) = W∞(t)LW∞(t)−1. We obtain

L̇(t) = [−(W∞(t)σ
−1LσW∞(t)

−1)−, L(t)] (2.5)

from (2.4). Since the right hand side of (1.5) leaves the σ -cell for the φ-cell at t = 0, W∞(t) of (2.4) has a pole at
t = 0 [9].

3. The Toda lattice as the Hamiltonian system on the coordinate ring of Hessenberg matrices

Let V be the affine space of the n × n Hessenberg matrices

V =

{
Λ +

∑
1≤ j≤i≤n

L i, j Ei, j |L i, j ∈ C

}
.

LetO be a sheaf of the commutative algebra on V and I be a sheaf of the ideal ofO. The sheaf of the quotient algebra
O/I is the sheaf associated with the presheaf whose section on U is Γ (U,O)/Γ (U, I) for any open set U of V . Let
Cω be the sheaf of the analytic functions on V . We define the subsheaf C of Cω on V as follows. Let U be an open set
of V . The section Γ (U, C) is the commutative algebra generated by the coordinate functions Li, j (U ), 1 ≤ j ≤ i ≤ n,
where Li, j (U )(L) = L i, j for L ∈ U . As long as we do not need manifestation, we abbreviate Li, j (U ) as Li, j and
U is an arbitrary open set of V . We now define the sheaf of the formal power series O[[t]] whose section on U is
Γ (U,O[[t]]) = Γ (U,O)[[t]]. We define the subsheaf of Λ + C ⊗ b̄, Lax, such that

Γ (U,Lax) =

{
Λ +

∑
1≤ j≤i≤n

Li, j ⊗ Ei, j

}
. (3.1)

We have the following decomposition of C:

Γ (U, C) = Γ (U,A)⊗ Γ (U, C N̄ ), (3.2)

where A is the sheaf of the subalgebra of C which is isomorphic to the sheaf of the affine algebra of N̄ and C N̄ is the
sheaf of the subalgebra of C of invariants with respect to the adjoint action of N̄ . The sheaf C N̄ is the sheaf associated
with the presheaf U → Γ (U, C)N̄ for any open set U of V . This decomposition is valid for any complex semi-simple
Lie algebra [12]. There existW∞ ∈ Γ (U,A)⊗ N̄ and χ0 ∈ Γ (U, C N̄ )⊗ Mat(n,C) uniquely given in a form such as

χ0 = Λ +

n∑
i=1

ϕi ⊗ Ei,1, ϕ1, . . . , ϕn ∈ Γ (U, C N̄ )

and L = W∞χ0W−1
∞ for any L ∈ Γ (U,Lax). There exists a structure of the Poisson algebra of Kostant and Kirillov

in Γ (U, C) defined by

{Li, j ,Lk,`} = δ j,kLi,` − δ`,iLk, j . (3.3)

We define the vector field X on Γ (U, C) by

X f =

{
1
2

trL2, f

}
, for f ∈ Γ (U, C). (3.4)

We see that

XL = [L+,L]. (3.5)
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Let us construct the sheaf of solutions of the full Kostant–Toda lattice as a subsheaf of Λ + C[[t]] ⊗ b̄. For
L(t) ∈ Λ + Γ (U, C)[[t]] ⊗ b̄, we define the tangent vector X (t) ∈ TL(t)Γ (U, C)[[t]] by

X (t) =

{
1
2

trL(t)2, ∗
}
.

X (t) transforms the sections of Γ (U, C)[[t]] to the sections of Γ (U, C)[[t]].

Lemma 3.2. There exists a unique solution of the Hamiltonian equation

dL(t)
dt

= X (t)L(t) (3.6)

as a section of Λ + Γ (U, C)[[t]] ⊗ b̄.

Proof. Put

L(t) = L+ tB(1) + t2B(2) + · · · ,

where B(i) ∈ Γ (U, C)⊗ Mat(n,C). Then we can determine B(i) ∈ Γ (U, C)⊗ b̄, i = 1, 2, . . ., uniquely. �

We define the sheaf Sol by

Γ (U,Sol) = {L(t)|L(t) ∈ Λ + Γ (U, C)[[t]] ⊗ b̄ satisfies (3.6)}.

Let L(t) = (Li, j (t))1≤ j≤i≤n be the section of Γ (U,Sol). We will show that the Hamiltonian flow of X (t) preserves
the Poisson bracket.

Lemma 3.3. It holds that

{Li, j (t),Lk,`(t)} = δ j,kLi,`(t)− δ`,iLk, j (t). (3.7)

Proof. In the same way as in the proof of Lemma 3.2, there exists a unique solution of

d f (t)

dt
= X (t) f (t)

in Γ (U, C)[[t]]. Put F(t) = {Li, j (t),Lk,`(t)} and G(t) = δ j,kLi,`(t)− δ`,iLk, j (t). We have

d
dt

F(t) =

{
dLi, j (t)

dt
,Lk,`(t)

}
+

{
Li, j (t),

dLk,`(t)

dt

}
= {X (t)Li, j (t),Lk,`(t)} + {Li, j (t),X (t)Lk,`(t)}

= X (t){Li, j (t),Lk,`(t)} = X (t)F(t).

On the other hand it is clear that

d
dt

G(t) = X (t)G(t).

Since F(0) = G(0), we have F(t) = G(t) by the uniqueness of the solution. �

We have the following proposition from (3.5) and Lemma 3.3.

Proposition 3.4. The Hamiltonian equation (3.6) induces the Lax equation

dL(t)
dt

= [L(t)+,L(t)]. (3.8)

Let us show the fact that the Hamiltonian vector field X (t) is tangential to the submanifold of Jacobi elements in
sheaf theoretical language. This is a preparation for the proof of the main theorem. Let I be the sheaf of the ideal of
C where Γ (U, I) is generated by Li, j with i − j ≥ 2. By definition of the Poisson bracket, it is easy to see that I is
also an ideal with respect to the Poisson bracket, that is,

{C, I} ⊂ I.
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From this fact there exists a structure of Poisson algebra in the sheaf of the quotient algebra C/I. Let ρ : C → C/I
be the canonical morphism of sheaves. Note that ρ is also a morphism with respect to the Poisson bracket.

Remark. Let N̄3 be the subgroup of N̄ defined by

N̄3 := {W = (wi, j ) ∈ N̄ |wi, j = 0 for 1 ≤ i − j ≤ 2}.

There exists a Hamiltonian action of N̄3 on V (AdN̄3). Let us consider the Hamiltonian reduction [14] V/N̄3. Let
π : V → V/N̄3 be a canonical projection. We can define the sheaf of the affine coordinate ring of V/N̄3. We denote
it by C′. There exists an isomorphism of sheaves on V between C/I and π−1C′.

For P = (Pi, j ) ∈ Γ (U, C)⊗ Mat(n,C), we use the notation ρ(P) = (ρ(Pi, j )). Strictly speaking, we should use
the notation ρ(U ). However we abbreviate ρ(U ) as ρ as long as there is no confusion. Since the sections of Γ (U,Sol)
are expanded with respect to t into a form such as

L(t) = L(0)+ tB(1) + t2B(2) + · · · ,

where L(0) = L ∈ Γ (U,Lax) and B( j)
∈ Γ (U, C)⊗ b̄, j = 1, 2, . . ., we can extend ρ as

ρ(L(t)) = ρ(L)+ tρ(B(1))+ t2ρ(B(2))+ · · · .

Proposition 3.5. Suppose L(t) = (Li, j (t)) ∈ Γ (U,Sol). It holds that

ρ(Li, j (t)) = 0, (3.9)

for i − j ≥ 2.

Proof. Put

L(t) = L+ tB(1) + t2B(2) + · · · .

Thus we see that

B(k) =
1
k!

dkL(t)
dtk

∣∣∣∣
t=0
. (3.10)

We show the following lemma.

Lemma 3.6. The derivatives dkL(t)
dtk , k = 1, 2, . . ., are linear sums of terms such as

[Π1(t)+, [Π2(t)+, [. . . , [Πµ(t)+,L(t)] . . .]]], (3.11)

where 1 ≤ µ ≤ k and Πi (t) ∈ Γ (U, C)[[t]] ⊗ Mat(n,C).

Proof. We show this lemma by induction on k. When k is 1, this lemma is straightforward from (3.8). Suppose dkL(t)
dtk

is a linear sum of terms of (3.11). Thus dk+1L(t)
dtk+1 is a linear sum of terms:

d
dt

[Π1(t)+, [Π2(t)+, [. . . , [Πµ(t)+,L(t)] . . .]]] =

[(
dΠ1(t)

dt

)
+

, [Π2(t)+, [. . . , [Πµ(t)+,L(t)] . . .]]
]

+ · · · +

[
Π1(t)+,

[
Π2(t)+,

[
. . . ,

[(
dΠµ(t)

dt

)
+

,L(t)
]
. . .

]]]
+ [Π1(t)+, [Π2(t)+, [. . . , [Πµ(t)+, [L(t)+,L(t)]] . . .]]].

This completes the proof of Lemma 3.6. �

We see that B(k) is a linear combination of terms such as

[Π1(0)+, [Π2(0)+, [. . . , [Πµ(0)+,L] . . .]]] (3.12)
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from Lemma 3.6 and (3.10). We will show that the i j components of B(k) belong to Γ (U, I) ⊗ b̄ if i − j ≥ 2 by
induction. Let Π1 be a matrix of Γ (U, C)⊗ Mat(n,C). Thus the i j component of [Π1+,L] is the i j component of[

Π1+,
∑

k−`≥2

Lk,`Ek,`

]
.

Then we have ([Π1+,L])i, j ∈ Γ (U, I) if i − j ≥ 2. Suppose

([Π1+, [Π2+, [. . . , [Πµ+
,L] . . .]]])i, j ∈ Γ (U, I),

for i − j ≥ 2. We see that

([Π1+, [Π2+, [. . . , [Πµ+
, [Πµ+1+

,L]] . . .]]])i, j

=

([
Π1+,

∑
k−`≥i− j

([Π2+, [. . . , [Πµ+1+
,L] . . .]])k,`Ek,`

])
i, j

. (3.13)

Since i − j ≥ 2, we have k − ` ≥ 2. We see that

([Π2+, [. . . , [Πµ+
,L] . . .]])k,` ∈ Γ (U, I)

from the assumption of the induction. Then we see that the left hand side of (3.13) is an element of Γ (U, I). From
this fact we see that

Li, j (t) = Li, j +

∞∑
k=1

tkB(k)i, j

belongs to Γ (U, I)[[t]] if i − j ≥ 2. Then we have ρ(Li, j (t)) = 0 for i − j ≥ 2. �

Proposition 3.7. Let L(t) be a section of the solution of Γ (U,Sol). Then ρ(L(t)) satisfies the Lax equation

dρ(L(t))
dt

= [ρ(L(t))+, ρ(L(t))]. (3.14)

Furthermore (3.14) is the Hamiltonian equation for 1
2 trρ(L(t))2 on Γ (U, C/I)[[t]].

Proof. By the definition of ρ, we see that

dρ(L(t))
dt

= ρ

(
dL(t)

dt

)
.

Since ρ is an algebraic homomorphism, we have

dρ(L(t))
dt

= ρ

(
dL(t)

dt

)
= ρ([L(t)+,L(t)]) = [ρ(L(t))+, ρ(L(t))].

On the other hand since ρ is also a morphism of a sheaf of the Poisson algebra, we have

dρ(L(t))
dt

= ρ

(
dL(t)

dt

)
= ρ

({
1
2

trL2(t),L(t)
})

=

{
1
2

trρ(L(t))2, ρ(L(t))
}
. �

Note that ρ(L(t)) is a Jacobi element from Proposition 3.5 Then (3.14) is the Lax equation of the Toda lattice (not
the full Kostant–Toda lattice).

4. Wave operators and τ functions

In this section we consider the Gauss decomposition (1.7)

W̃∞(t)
−1W̃0(t) = et Lσ−1, (4.1)



K. Ikeda / Journal of Geometry and Physics 57 (2007) 799–813 807

where W̃∞(t) ∈ N̄ and W̃0(t) ∈ B ∩ σ Bσ−1. Let us show that the decomposition (4.1) is equivalent to the
decomposition W∞(t)−1σW0(t) = et L . In the same way as in Section 2, there exists b(t) ∈ N such that
σb(t)σ−1

∈ N̄ and σb(t)W0(t)σ−1
∈ B. Put W̃0(t) = b(t)W0(t). Since W∞(t)−1σW0(t) = et L , we have

(W∞(t)
−1σb(t)−1σ−1)(σ W̃0(t)σ

−1) = et Lσ−1.

Since σb(t)σ−1
∈ N̄ and W∞(t) ∈ N̄ , we have W̃∞(t) ∈ N̄ , where W̃∞(t) = σb(t)σ−1W∞(t). On the other hand,

since W̃0(t) ∈ B and σ W̃0(t)σ−1
∈ B, we have σ W̃0(t)σ−1

∈ B ∩ σ Bσ−1. Let us show the converse. Suppose that
we have the decomposition (4.1). We have

W̃∞(t)σ (σ
−1W̃0(t)σ ) = et L .

Since W̃0(t) ∈ B ∩ σ Bσ−1, we recover the decomposition of the σ -cell N̄σ B/B. This decomposition relates to a
cell decomposition of N̄ B such as N̄ B = tσ∈Sn Y ′

σ , where Y ′
σ is an open dense subset of π ′

σ = N̄ (B ∩ σ Bσ−1)

defined by Y ′
σ = π ′

σ − ∪τ>σ π
′
τ . Put L̃(t) = W̃∞(t)LW̃∞(t)−1. In this case we obtain the ordinary Lax equation

˙̃L(t) = [L̃(t)+, L̃(t)] from (4.1) in comparison with (2.5). Let us consider the problem mentioned in the introduction.
As we said in the introduction, L̃(t) is a Jacobi element if L is a Jacobi element in the case of σ = id [13]. The key
point of this proof is et L

∈ GL , a centralizer of L . However in the case of σ 6= id , et Lσ−1
6∈ GL in general. Let U be

an open subset of V . The degree θ in Γ (U, C) is defined by

θ(Lm1
i1, j1

· · ·Lmr
ir , jr

) =

r∑
µ=1

mµ(iµ − jµ + 1).

We call this grading the x0-grading of Kazhdan ([12], p. 111). Let Cµ be the sheaf of a homogeneous space of degree
µ such that Γ (U, Cµ) = { f ∈ Γ (U, C)|θ( f ) = µ}. We regard C0 = C as a constant sheaf on V . We define the
completion C̄ of C by

Γ (U, C̄) =

{
∞∑
µ=0

aµ fµ|aµ ∈ C, fµ ∈ Γ (U, Cµ)
}
.

For X =
∑
µ aµ fµ ∈ Γ (U, C̄) and Y =

∑
µ bµgµ ∈ Γ (U, C̄), where aµ, bµ ∈ C and fµ, gµ ∈ Γ (U, Cµ), the

product XY ∈ Γ (U, C̄) is defined by

XY =

∞∑
ζ=0

∑
µ+ν=ζ

aµbν fµgν .

Then C̄ becomes the sheaf of the commutative algebra on V . We define expL, a subsheaf of C̄, as follows.

Lemma 4.1. Put Φ(L) = eL = (Φi, j (L))1≤i, j≤n for L ∈ Γ (U,Lax). Then Φi, j (L) is a section of Γ (U, C̄).

Proof. Φ(L) is formally expressed by Φ(L) =
∑

∞

µ=0 Lµ/µ!. Put Lµ = (L(µ)i, j )i, j . Then we see that

θ(L(µ)i, j ) = i − j + µ. (∗)

We show this fact by induction. When µ = 1, we have

L(1)i, j =

Li, j i ≥ j
1 j = i + 1
0 j > i + 1.

Then we have θ(L(1)i, j ) = i − j + 1, where we take a = 0 if θ(a) < 0. We assume (∗) is correct at µ. Since

Lµ+1
=

L1,1 1 0 . . .
...

. . .
. . .

...

Ln,1 . . . . . . Ln,n



L(µ)1,1 . . . L(µ)1,n
... . . .

...

L(µ)n,1 . . . L(µ)n,n

 ,
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we have

(Lµ+1)i, j =

i∑
k=1

Li,kL(µ)k, j + L(µ)i+1, j .

We have

θ(Li,kL(µ)k, j ) = i − k + 1 + k − j + µ = i − j + (µ+ 1)

and θ(L(µ)i+1, j ) = i + 1 − j + µ = i − j + (µ + 1) from the assumption of the induction. Then we show that (∗) is

correct. Since Φi, j (L) =
∑

∞

µ=0
1
µ!
L(µ)i, j and (∗), we have Φi, j (L) ∈ Γ (U, C̄). �

Definition. For any fixed finite value t0 ∈ C, exp(t0L) is a subsheaf of C̄ on V such as

Γ (U, exp(t0L)) = algebra generated by Φi, j (t0L), 1 ≤ i, j ≤ n.

Remark. We fix t0 ∈ C in the Definition. Then Φi, j (t0L) is not a section of Γ (U, C)[[t]] but a section of Γ (U, C̄).
The proof of the fact that Φi, j (t0L) ∈ Γ (U, C̄) is the same as the proof of Lemma 4.1.

Let O be a sheaf of the commutative algebra on V . Let Q(O) be the sheaf of the quotient field of O. We denote
Q(O[[t]]) by O((t)). Put Φ(t) = (Φi, j (t))i, j = etL. Then we see that Φi, j (t) ∈ Γ (U, C)[[t]] and Φi, j (t0) ∈ Γ (U, C̄)
for any finite value t0. Let Cω be the sheaf of the analytic function on V . Since et L converges for any t , exp(t0L) is
the sheaf of the subalgebra of Cω. Let F be a certain sheaf on V . Let us consider the Gauss decomposition

W∞(t)
−1W0(t) = e(t−t0)Lσ−1, (4.2)

where W∞(t) ∈ Γ (U,F) ⊗ N̄ and W0(t) ∈ Γ (U,F) ⊗ B ∩ σ Bσ−1. We will determine F . Note that W∞(t) has
a pole at t = t0 in (4.2). To consider W∞(0), we move the pole from t = 0 to t = t0. We define the weight on
Γ (U, C)[[t − t0]] as follows. Suppose (t − t0)ng ∈ Γ (U, C)[[t − t0]] and g is a homogeneous element for θ . Then we
define weight((t − t0)ng) = θ(g)− n. Put Φ(t) = e(t−t0)L = (Φi, j (t))i, j . We have the following lemma.

Lemma 4.2. It holds that

weight(Φi, j (t)) = i − j.

Proof. Since Φi, j (t) =
∑

∞

µ=0
(t−t0)µ

µ!
L(µ)i, j and weight((t − t0)µL(µ)i, j ) = i − j + µ − µ = i − j , we have the

conclusion. �

We have the following lemma.

Lemma 4.3. Suppose f (t) =
∑

∞

µ=0 fµtµ ∈ Γ (U, C)[[t]] satisfies a condition such that weight( fµtµ) is constant on

µ. Then f (t0) is an element of Γ (U, C̄) for any finite value t0.

Proof. Let M be the constant of this proposition. Since θ( fµ) = M+µ, we have fµtµ0 ∈ CM+µ. This means f (t0) ∈ C̄
for any finite value t0. �

Put Ψ(t) = (ψi, j (t))i, j = e(t−t0)Lσ−1.

Lemma 4.4. It holds that

weight


∣∣∣∣∣∣∣
ψ1,1(t) . . . ψ1, j−1(t)
... . . .

...

ψ j−1,1(t) . . . ψ j−1, j−1(t)

∣∣∣∣∣∣∣
 =

j ( j − 1)
2

− {σ−1(1)+ · · · + σ−1( j − 1)}.



K. Ikeda / Journal of Geometry and Physics 57 (2007) 799–813 809

Proof. We see that∣∣∣∣∣∣∣
ψ1,1(t) . . . ψ1, j−1(t)
... . . .

...

ψ j−1,1(t) . . . ψ j−1, j−1(t)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
Φ1,σ−1(1)(t) . . . Φ1,σ−1( j−1)(t)

... . . .
...

Φ j−1,σ−1(1) . . . Φ j−1,σ−1( j−1)(t)

∣∣∣∣∣∣∣
=

∑
τ∈S j−1

sgn τΦ1,τσ−1(1)(t) · · ·Φ j−1,τσ−1( j−1)(t),

where we regard τ ∈ S j−1 as a permutation of {σ−1(1), . . . , σ−1( j − 1)}. From Lemma 4.2 it holds that
weight(Φi,τσ−1(i)(t)) = i − τσ−1(i); then we have

weight(Φ1,τσ−1(1)(t) · · ·Φ j−1,τσ−1( j−1)(t)) =
j ( j − 1)

2
− {τσ−1(1)+ · · · + τσ−1( j − 1)}

=
j ( j − 1)

2
− {σ−1(1)+ · · · + σ−1( j − 1)}. �

We have

(W∞(t)e(t−t0)Lσ−1)− = 0, (4.3)

from (4.2). Put W∞(t) = (w∞

i, j (t))i, j . Then we have

(w∞

j,1(t), . . . , w
∞

j, j−1(t))

 ψ1,1(t) . . . ψ1, j−1(t)
... . . .

...

ψ j−1,1(t) . . . ψ j−1, j−1(t)

 = −(ψ j,1(t), . . . , ψ j, j−1(t)). (4.4)

We have w∞

j,k(t) = −τ j,k(t)/τ j (t) from (4.4), where

τ j (t) =

∣∣∣∣∣∣∣
ψ1,1(t) . . . ψ1, j−1(t)
... . . .

...

ψ j−1,1(t) . . . ψ j−1, j−1(t)

∣∣∣∣∣∣∣ and τ j,k(t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1,1(t) . . . ψ1, j−1(t)
... . . .

...

ψk−1,1(t) . . . ψk−1, j−1(t)
ψ j,1(t) . . . ψ j, j−1(t)
ψk+1,1(t) . . . ψk+1, j−1(t)

... . . .
...

ψ j−1,1(t) . . . ψ j−1, j−1(t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Then we see that W∞(t) ∈ Γ (U, C)((t − t0)) ⊗ N̄ . We see that W∞(0) ∈ Γ (U,Q(C̄)) ⊗ N̄ from Lemmas 4.3 and
4.4. Moreover we see that W∞(0) ∈ Γ (U,Q(exp(−t0L)))⊗ N̄ ⊂ Γ (U,Q(Cω))⊗ N̄ . On the other hand from

W0(t) = W∞(t)e(t−t0)Lσ−1,

we have

W0(t) ∈ Γ (U, C)((t − t0))⊗ (B ∩ σ Bσ−1)

and

W0(0) ∈ Γ (U,Q(exp(−t0L)))⊗ (B ∩ σ Bσ−1) ⊂ Γ (U,Q(Cω))⊗ (B ∩ σ Bσ−1).

L can be decomposed into a form such as L = W∞χ0W−1
∞ , where W∞ ∈ Γ (U, C)⊗ N̄ and the components of the

first column of χ0 are generators of Γ (U, C N̄ ). Note that W∞ 6= W∞(0). We have

W̃∞(t)
−1W0(t) = e(t−t0)χ0W−1

∞ σ−1, (4.5)

from (4.2), where W̃∞(t) = W∞(t)W∞. Put L̃(t) = W̃∞(t)χ0W̃−1
∞ (t). We see that L̃(t) has the form Λ + b̄. Put

L̃ = (L̃i, j )i, j = L̃(0). Let C̃ be the sheaf on V whose section on U is the algebra generated by L̃i, j , 1 ≤ j ≤ i ≤ n.
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Since L̃ = W̃∞(0)χ0W̃∞(0)−1, we see that ϕ1, . . . , ϕn ∈ Γ (U, C̃ N̄ ) and W̃∞(0) ∈ Γ (U, C̃)⊗ N̄ . From (4.5), we see
that L̃(t) satisfies the Lax equation

˙̃L(t) = [L̃(t)+, L̃(t)]. (4.6)

Then we see that L̃(t) ∈ Λ+Γ (U, C̃)[[t]]⊗ b̄ and W̃∞(t) ∈ Γ (U, C̃)[[t]]⊗ N̄ from the results of Section 3. Let Ĩ be
the sheaf of the ideal of C̃ whose sections on U are generated by L̃i, j , i − j ≥ 2. We consider the quotient sheaf C̃/Ĩ
on V . Let ρ̃ be the canonical projection from C̃ to C̃/Ĩ. We can define the sheaves L̃ax, S̃ol, Ĩ, C̃[[t]], C̃((t)), C̃µ, ¯̃C
and exp L̃ from C̃ as we did in Section 3 and this section. We extend ρ̃ to ¯̃C, ¯̃C[[t]], Q( ¯̃C) and ¯̃C((t)) as follows.

(1) For f =
∑

∞

µ=0 fµ ∈ Γ (U, ¯̃C), we define ρ̃( f ) =
∑

∞

µ=0 ρ̃( fµ), where fµ ∈ Γ (U, C̃µ).
(2) For g(t) =

∑
∞

µ=0 gµtµ ∈ Γ (U, ¯̃C)[[t]], we define ρ̃(g(t)) =
∑

∞

µ=0 ρ̃(gµ)t
µ, where gµ ∈ Γ (U, ¯̃C).

(3) For f/g ∈ Γ (U,Q( ¯̃C)), we define ρ̃( f/g) = ρ̃( f )/ρ̃(g), where f, g ∈ Γ (U, ¯̃C).
(4) For f (t)/g(t) ∈ Γ (U, ¯̃C)((t)), we define ρ̃( f (t)/g(t)) = ρ̃( f (t))/ρ̃(g(t)), where f (t), g(t) ∈ Γ (U, ¯̃C)[[t]].
We want to apply ρ̃ to both sides of (4.5). Since W̃∞(t) ∈ Γ (U, C̃)((t − t0))⊗ N̄ and χ0 ∈ Γ (U, C̃ N̄ )⊗Mat(n,C),

we can apply ρ̃ to W̃∞(t) and χ0. But W0(t) belongs to Γ (U, C)((t − t0)) ⊗ (B ∩ σ Bσ−1) and W∞ belongs to
Γ (U, C)⊗ N̄ . Then we see that we cannot apply ρ̃ toW0(t) andW∞, at a glance. Fortunately we obtain the following
proposition.

Proposition 4.5. There exists a morphism from C to Q( ¯̃C). Then the morphism ρ̃ can be applied to both sides of (4.5).
ρ̃(W0(t)) and ρ̃(W∞) are well defined.

Proof. By the definition of W̃∞(t), we have

L̃ = W∞(0)LW∞(0)−1. (4.7)

We have L̃i, j ∈ Γ (U,Q(exp(−t0L)))⊗C Γ (U, C) from (4.7). Since expL is a subsheaf of Cω, we see that
Q(exp(−t0L)) is a subsheaf of Q(Cω). Note that Q(Cω) is the sheaf of the meromorphic functions on V . From
(4.7) we obtain the relation L̃i, j = γi, j (U )(L) ∈ Γ (U,Q(C̄)), 1 ≤ j ≤ i ≤ n. This γ (U ) defines the morphism µ

from C̃ to Q(C̄) as follows. For any open set U of V , µ(U ) is defined by

µ(U ) f (L̃1,1, L̃1,2, . . .) = f (γ1,1(U )(L), γ1,2(U )(L), . . .)

for any f ∈ Γ (U, C̃). For L ∈ V , put L i, j = Li, j (L) and L̃ i, j = L̃i, j (L). Let U be an open set of V and L be a
point of U . Then γ (U ) is a meromorphic map on U . Since L̃i, j = γi, j (U )(L), we have L̃i, j (L) = γi, j (U )(L)(L)
for L ∈ U . Then we have L̃ i, j = γi, j (U )(L). Let L be a generic point of V and U (L) be the neighbourhood
of L contained by U sufficiently small that γ (U )|U (L) = γ (U (L)) is an onto holomorphic map from U (L) to
γ (U (L))(U (L)). By the theorem of the inverse function, we see that L i, j can be expressed in terms of the analytic

function of L̃k,`, 1 ≤ ` ≤ k ≤ n. This means that there exists a morphism from C to Q( ¯̃C). In other words,

Li, j ∈ Γ (U,Q( ¯̃C)). Since W0(t) ∈ Γ (U, C)((t − t0)) ⊗ (B ∩ σ Bσ−1) and W∞ ∈ Γ (U, C) ⊗ N̄ , we have

W0(t) ∈ Γ (U,Q( ¯̃C))((t − t0)) ⊗ (B ∩ σ Bσ−1) and W∞ ∈ Γ (U,Q( ¯̃C)) ⊗ N̄ . We can apply ρ̃ to W0(t) and
W∞ by (1)–(4). �

Proposition 4.6. Let

W̃∞(t)
−1W0(t) = e(t−t0)χ0W−1

∞ σ−1

be the Gauss decomposition of (4.5) and ρ̃ be the morphism defined above. Then (4.5) implies the Gauss
decomposition

ρ̃(W̃∞(t))
−1ρ̃(W0(t)) = e(t−t0)ρ̃(χ0)ρ̃(W∞)

−1σ−1. (4.8)

Furthermore (4.8) gives a section of the solution of the Toda lattice ρ̃(W∞(t))ρ̃(χ0)ρ̃(W∞(t))−1 of the Jacobi
element.
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Proof. We see that ρ̃(W∞(t))ρ̃(χ0)ρ̃(W∞(t))−1
= ρ̃(L̃(t)). We see that ρ̃(L̃(t)) is a Lax operator of the Toda lattice

from Proposition 3.7 of Section 3. �

Let us realize the Toda lattice associated with the small cell as orbits on the iso-level set of the full Kostant–Toda
lattice. Put m = (m1, . . . ,mn) ∈ Cn . We define the algebraic variety Sm by Sm := {L ∈ V |ϕi (L) = mi , i =

1, . . . , n}. We call Sm the iso-level set of the full Kostant–Toda lattice of level m. The iso-level set Sm has the cell
decomposition associated with Sn . For σ ∈ Sn , put

Sm,σ := {L ∈ Sm |e−t0 Lσ−1
∈ N̄ (B ∩ σ Bσ−1)}.

Then we have

Sm = tσ∈Sn Sm,σ .

For f (L̃) ∈ Γ (U,Q( ¯̃C)), we see that ρ̃( f (L̃)) = f (ρ̃(L̃)) by definition. Suppose f ∈ Γ (U,Q( ¯̃C)) is a meromorphic
function on V . Then f (L̃) is an analytic function of L̃ in the neighbourhood of L̃0 ∈ U , a generic point of V . Suppose
L̃ ∈ V is a Jacobi element; then we see that ρ(L̃)(L̃) = L̃ . Then we have ρ̃( f (L̃))(L̃) = f (L̃)(L̃). Both sides of (4.5)
and L̃(t) = W̃∞(t)χ0W̃∞(t)−1 are matrix valued analytic functions on V . Put L̃(t) = L̃(t)(L̃), W̃∞(t) = W̃∞(t)(L̃),
W0(t) = W0(t)(L̃) and W∞ = W∞(L̃). If L̃ is a Jacobi element, we have

ρ̃(L̃(t))(L̃) = L̃(t), ρ̃(W̃∞(t))(L̃) = W̃∞(t),

ρ̃(W0(t))(L̃) = W0(t) and ρ̃(W∞)(L̃) = W∞.

Moreover since ρ̃ϕi (L̃) = ϕi (ρ̃(L̃)), i = 1, . . . , n, we have ρ̃(χ0)(L̃) = χ0(L̃). Since W∞(0) ∈ Γ (U, C̄) ⊗ N̄ , we

see that W∞(0) ∈ Γ (U,Q( ¯̃C))⊗ N̄ . Then we can define W∞(0) = W∞(0)(L̃) and W∞(0) = ρ̃(W∞(0))(L̃) if L̃ is
a Jacobi element. Then we have the following theorem.

Theorem 4.7. Suppose L = W∞(0)−1 L̃W∞(0) ∈ Sm,σ and L̃ is a Jacobi element. Then L̃(t) is equal to
W̃∞(t)χ0(m)W̃∞(t)−1, where

χ0(m) = Λ +

n∑
i=1

mi Ei,1,

and W̃∞(t) and W0(t) satisfy the Gauss decomposition

W̃∞(t)
−1W0(t) = e(t−t0)χ0(m)W −1

∞ σ−1. (4.9)

Moreover L̃(t) satisfies the Lax equation dL̃(t)
dt = [L̃(t)+, L̃(t)] and L̃(t) is a Jacobi element in the neighbourhood of

t = 0.

The inverse of Theorem 4.7 holds.

Corollary 4.8. Suppose L = W∞(0)−1 L̃W∞(0) ∈ Sm,σ and L̃ is a Jacobi element. If U∞(t) ∈ N̄ and U0(t) ∈ B
satisfies the Gauss decomposition

U∞(t)
−1U0(t) = e(t−t0)χ0(m)W −1

∞ σ−1, (4.10)

then M̃(t) = U∞(t)χ0(m)U∞(t)−1 is a Lax operator of the Toda lattice and U0(t) ∈ B ∩ σ Bσ−1.

Proof. Note that if L̃ is given, then W −1
∞ possesses the L̃ data in the decomposition (4.10). By the uniqueness of the

Gauss decomposition, U∞(t) and U0(t) coincide with W̃∞(t) and W0(t) of Theorem 4.7 respectively. Theorem 4.7
guarantees that M̃(t) = W̃∞(t)χ0(m)W̃∞(t)−1 is a Lax operator of the Toda lattice and U0(t) = W0(t) ∈

B ∩ σ Bσ−1. �

Let us apply Corollary 4.8 to the case of σ = id . In this case the original Gauss decomposition is W∞(t)−1W0(t) =

e(t−t0)L . Since W∞(t) does not have a pole at t = t0 in general, we may put t0 = 0 and we can consider W∞(0).
In this case we have W∞(0) = 1n by the uniqueness of the decomposition. If L̃ = W∞(0)LW∞(0)−1 satisfies the
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condition of Corollary 4.8, this means that L ∈ Sm,φ and L̃ is a Jacobi element. But in the case of σ = id , we see that
L = L̃ . This is nothing but the condition of Proposition 1.1. Consider the Gauss decomposition

W̃∞(t)
−1W0(t) = etχ0(m)W −1

∞ . (4.11)

But we have

W −1
∞ W∞(t)

−1W0(t) = etχ0(m)W −1
∞

W∞(t)
−1W0(t) = et L .

This is also nothing but a condition of Proposition 1.1. We see that L̃(t) = W̃∞(t)χ0(m)W̃∞(t)−1 is a Lax operator
of the Toda lattice from Corollary 4.8. But we have

L̃(t) = W∞(t)W∞χ0(m)W
−1
∞ W∞(t)

−1
= W∞(t)LW∞(t)

−1

and L̃(0) = L; these are nothing but the conclusions of Proposition 1.1.
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Appendix

In this case we consider G = GL(2,R). Let V be the set of 2 × 2 Hessenberg matrices whose eigenvalues are all
0, that is,

V =

{(
a 1

−a2
−a

)∣∣∣∣ a ∈ R
}
.

Put S0(t) := {et L
|L ∈ V }, that is,

S0(t) =

{(
1 + ta t
−ta2 1 − ta

)∣∣∣∣ a ∈ R
}
.

It is easy to see that S0(t) is homeomorphic to R for t 6= 0. Let S̄0(t) be the compactification of S0(t). We regard
S̄0(t) as the circle of radius |t |. When t varies from 1 to 0, S̄0(t) shrinks to one point S̄0(0) = {12} along the cone (see
Fig. A.1).

For et L(a)
∈ S0(t), we consider the Gauss decomposition

W∞(t)
−1W0(t) = et L(a),

where

W∞(t) =

(
1 0
w(t) 1

)
and W0(t) =

(
x(t) y(t)

0 z(t)

)
.

We see that w(t) =
−ta2

1+ta . When t = 1, we cannot perform Gauss decomposition for eL(−1)
=

(
0 1

−1 2

)
. Let

P1(−1) be the point of S̄0(1) corresponding to eL(−1). Then S̄0(1) has a cell decomposition associated with the

Bruhat decomposition G/B = N̄ B/B t N̄σ B/B, where σ =

(
0 1
1 0

)
, such as

S̄0(1) = (S̄0(1)− P1(−1)) t P1(−1).

In the same way, S̄0(t) has the decomposition

S̄0(t) = (S̄0(t)− Pt (−1)) t Pt (−1),
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Fig. A.1.

where Pt (−1) is the point of S̄0(t) corresponding to
(

0 t
−1/t 2

)
. When t varies from 1 to 0, Pt (−1) moves along the

curve on the cone of Fig. A.1. This curve is the flow of the Toda lattice whose initial point belongs to the σ -cell and
that preserves the σ -cell. Let Qt (a) be the point of S̄0(t) corresponding to et L(a), where a 6= −1. Qt (a) moves along
the line on the cone. Suppose the curve of Pt (−1) and the line of Qt (a) cross at P (at t = tP ). This shows us that the
Toda flow with initial point L(a) of the φ-cell leaves the σ -cell and has a pole at t = tP [7,9,10].
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